viernes, 21 de mayo de 2010

Postulados de la Relatividad Especial


Primer postulado - Principio especial de relatividad - Las leyes de la física son las mismas en todos los sistemas de referencia inerciales. En otras palabras, no existe un sistema inercial de referencia privilegiado, que se pueda considerar como absoluto.

Segundo postulado - Invariancia de c - La velocidad de la luz en el vacío es una constante universal, c, que es independiente del movimiento de la fuente de luz.

Principio de la Relatividad

Henri Poincaré, matemático francés, sugirió a finales del siglo XIX que el principio de relatividad establecido desde Galileo (la invariancia galileana) se mantiene para todas las leyes de la naturaleza. Joseph Larmor y Hendrik Lorentz descubrieron que las ecuaciones de Maxwell, la piedra angular del electromagnetismo, eran invariantes solo por una variación en el tiempo y una cierta unidad longitudinal, lo que produjo mucha confusión en los físicos, que en aquel tiempo estaban tratando de argumentar las bases de la teoría del éter, la hipotética substancia sutil que llenaba el vacío y en la que se transmitía la luz. El problema es que este éter era incompatible con el principio de relatividad.

En su publicación de 1905 en electrodinámica, Henri Poincaré y Albert Einstein explicaron que, con las transformaciones hechas por Lorentz, éste principio se mantenía perfectamente invariable. La contribución de Einstein fue el elevar a este axioma a principio y proponer a las transformadas de Lorentz como primer principio. Además descartó la noción de tiempo absoluto y requirió que la velocidad de la luz en el vacío sea la misma para todos los observadores, sin importar si éstos se movían o no. Esto era fundamental para las ecuaciones de Maxwell, ya que éstas necesitan de una invarianza general de la velocidad de la luz en el vacío.

Covariancia de Lorentz

Artículo principal: Covariancia de Lorentz
La teoría de la relatividad especial además busca formular todas las leyes físicas de forma que tengan validez para todos los observadores inerciales. Por lo que cualquier ley física debería tener una forma matemática invariante bajo unas transformaciones de Lorentz.

No hay comentarios:

Publicar un comentario